kedro_datasets_experimental.safetensors.SafetensorsDataset¶
- class kedro_datasets_experimental.safetensors.SafetensorsDataset(*, filepath, backend='numpy', version=None, credentials=None, fs_args=None, metadata=None)[source]¶
SafetensorsDataset
loads/saves data from/to a Safetensors file using an underlying filesystem (e.g.: local, S3, GCS). The underlying functionality is supported by the specified backend library passed in (defaults to thenumpy
library), so it supports all allowed options for loading and Safetensors files.Example usage for the YAML API:
test_model: type: safetensors.SafetensorsDataset filepath: data/07_model_output/test_model.safetensors
Example usage for the Python API:
from kedro_datasets_experimental.safetensors import SafetensorsDataset import numpy as np data = { ... "embedding": np.zeros((512, 1024)), ... "attention": np.zeros((256, 256)) ... } dataset = SafetensorsDataset( ... filepath="test.safetensors", ... ) dataset.save(data) reloaded = dataset.load() assert all(np.array_equal(data[key], reloaded[key]) for key in data)
Attributes
Methods
exists
()Checks whether a dataset's output already exists by calling the provided _exists() method.
from_config
(name, config[, load_version, ...])Create a dataset instance using the configuration provided.
load
()Loads data by delegation to the provided load method.
release
()Release any cached data.
Compute the version the dataset should be loaded with.
Compute the version the dataset should be saved with.
save
(data)Saves data by delegation to the provided save method.
Converts the dataset instance into a dictionary-based configuration for serialization.
- __init__(*, filepath, backend='numpy', version=None, credentials=None, fs_args=None, metadata=None)[source]¶
Creates a new instance of
SafetensorsDataset
pointing to a concrete Safetensors file on a specific filesystem.SafetensorsDataset
supports custom backends to serialise/deserialise objects.- The following backends are supported:
numpy
torch
tensorflow
paddle
flax
- Parameters:
filepath (
str
) – Filepath in POSIX format to a Safetensors file prefixed with a protocol like s3://. If prefix is not provided, file protocol (local filesystem) will be used. The prefix should be any protocol supported byfsspec
. Note: http(s) doesn’t support versioning.backend (
str
) – The backend library to use for serialising/deserialising objects. The default backend is ‘numpy’.version (
Optional
[Version
]) – If specified, should be an instance ofkedro.io.core.Version
. If itsload
attribute is None, the latest version will be loaded. If itssave
attribute is None, save version will be autogenerated.credentials (
Optional
[dict
[str
,Any
]]) – Credentials required to get access to the underlying filesystem. E.g. forGCSFileSystem
it should look like {“token”: None}.fs_args (
Optional
[dict
[str
,Any
]]) – Extra arguments to pass into underlying filesystem class constructor (e.g. {“project”: “my-project”} forGCSFileSystem
), as well as to pass to the filesystem’s open method through nested keys open_args_load and open_args_save. Here you can find all available arguments for open: https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.open All defaults are preserved, except mode, which is set to wb when saving.metadata (
Optional
[dict
[str
,Any
]]) – Any arbitrary metadata. This is ignored by Kedro, but may be consumed by users or external plugins.
- Raises:
ImportError – If the
backend
module could not be imported.
- exists()[source]¶
Checks whether a dataset’s output already exists by calling the provided _exists() method.
- Return type:
- Returns:
Flag indicating whether the output already exists.
- Raises:
DatasetError – when underlying exists method raises error.
- classmethod from_config(name, config, load_version=None, save_version=None)[source]¶
Create a dataset instance using the configuration provided.
- Parameters:
name (
str
) – Data set name.load_version (
Optional
[str
]) – Version string to be used forload
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.save_version (
Optional
[str
]) – Version string to be used forsave
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.
- Return type:
- Returns:
An instance of an
AbstractDataset
subclass.- Raises:
DatasetError – When the function fails to create the dataset from its config.
- load()[source]¶
Loads data by delegation to the provided load method.
- Return type:
- Returns:
Data returned by the provided load method.
- Raises:
DatasetError – When underlying load method raises error.
- release()[source]¶
Release any cached data.
- Raises:
DatasetError – when underlying release method raises error.
- Return type:
- save(data)[source]¶
Saves data by delegation to the provided save method.
- Parameters:
data (
Any
) – the value to be saved by provided save method.- Raises:
DatasetError – when underlying save method raises error.
FileNotFoundError – when save method got file instead of dir, on Windows.
NotADirectoryError – when save method got file instead of dir, on Unix.
- Return type:
- to_config()[source]¶
Converts the dataset instance into a dictionary-based configuration for serialization. Ensures that any subclass-specific details are handled, with additional logic for versioning and caching implemented for CachedDataset.
Adds a key for the dataset’s type using its module and class name and includes the initialization arguments.
For CachedDataset it extracts the underlying dataset’s configuration, handles the versioned flag and removes unnecessary metadata. It also ensures the embedded dataset’s configuration is appropriately flattened or transformed.
If the dataset has a version key, it sets the versioned flag in the configuration.
Removes the metadata key from the configuration if present.