kedro_datasets_experimental.netcdf.NetCDFDataset¶
- class kedro_datasets_experimental.netcdf.NetCDFDataset(*, filepath, temppath=None, load_args=None, save_args=None, fs_args=None, credentials=None, metadata=None)[source]¶
NetCDFDataset
loads/saves data from/to a NetCDF file using an underlying filesystem (e.g.: local, S3, GCS). It uses xarray to handle the NetCDF file.Example usage for the YAML API:
single-file: type: netcdf.NetCDFDataset filepath: s3://bucket_name/path/to/folder/data.nc save_args: mode: a load_args: decode_times: False multi-file: type: netcdf.NetCDFDataset filepath: s3://bucket_name/path/to/folder/data*.nc load_args: concat_dim: time combine: nested parallel: True
Example usage for the Python API:
from kedro_datasets.netcdf import NetCDFDataset import xarray as xr ds = xr.DataArray( ... [0, 1, 2], dims=["x"], coords={"x": [0, 1, 2]}, name="data" ... ).to_dataset() dataset = NetCDFDataset( ... filepath=tmp_path / "data.nc", ... save_args={"mode": "w"}, ... ) dataset.save(ds) reloaded = dataset.load() assert ds.equals(reloaded)
Attributes
Methods
exists
()Checks whether a dataset's output already exists by calling the provided _exists() method.
from_config
(name, config[, load_version, ...])Create a dataset instance using the configuration provided.
load
()Loads data by delegation to the provided load method.
release
()Release any cached data.
save
(data)Saves data by delegation to the provided save method.
Converts the dataset instance into a dictionary-based configuration for serialization.
- __init__(*, filepath, temppath=None, load_args=None, save_args=None, fs_args=None, credentials=None, metadata=None)[source]¶
Creates a new instance of
NetCDFDataset
pointing to a concrete NetCDF file on a specific filesystem- Parameters:
filepath (
str
) – Filepath in POSIX format to a NetCDF file prefixed with a protocol like s3://. If prefix is not provided, file protocol (local filesystem) will be used. The prefix should be any protocol supported byfsspec
. It can also be a path to a glob. If a glob is provided then it can be used for reading multiple NetCDF files.temppath (
Optional
[str
]) – Local temporary directory, used when reading from remote storage, since NetCDF files cannot be directly read from remote storage.load_args (
Optional
[dict
[str
,Any
]]) – Additional options for loading NetCDF file(s). Here you can find all available arguments when reading single file: https://xarray.pydata.org/en/stable/generated/xarray.open_dataset.html Here you can find all available arguments when reading multiple files: https://xarray.pydata.org/en/stable/generated/xarray.open_mfdataset.html All defaults are preserved.save_args (
Optional
[dict
[str
,Any
]]) – Additional saving options for saving NetCDF file(s). Here you can find all available arguments: https://xarray.pydata.org/en/stable/generated/xarray.Dataset.to_netcdf.html All defaults are preserved.fs_args (
Optional
[dict
[str
,Any
]]) – Extra arguments to pass into underlying filesystem class constructor (e.g. {“cache_regions”: “us-east-1”} fors3fs.S3FileSystem
).credentials (
Optional
[dict
[str
,Any
]]) – Credentials required to get access to the underlying filesystem. E.g. forGCSFileSystem
it should look like {“token”: None}.metadata (
Optional
[dict
[str
,Any
]]) – Any arbitrary metadata. This is ignored by Kedro, but may be consumed by users or external plugins.
- exists()[source]¶
Checks whether a dataset’s output already exists by calling the provided _exists() method.
- Return type:
- Returns:
Flag indicating whether the output already exists.
- Raises:
DatasetError – when underlying exists method raises error.
- classmethod from_config(name, config, load_version=None, save_version=None)[source]¶
Create a dataset instance using the configuration provided.
- Parameters:
name (
str
) – Data set name.load_version (
Optional
[str
]) – Version string to be used forload
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.save_version (
Optional
[str
]) – Version string to be used forsave
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.
- Return type:
- Returns:
An instance of an
AbstractDataset
subclass.- Raises:
DatasetError – When the function fails to create the dataset from its config.
- load()[source]¶
Loads data by delegation to the provided load method.
- Return type:
Dataset
- Returns:
Data returned by the provided load method.
- Raises:
DatasetError – When underlying load method raises error.
- release()[source]¶
Release any cached data.
- Raises:
DatasetError – when underlying release method raises error.
- Return type:
- save(data)[source]¶
Saves data by delegation to the provided save method.
- Parameters:
data (
Dataset
) – the value to be saved by provided save method.- Raises:
DatasetError – when underlying save method raises error.
FileNotFoundError – when save method got file instead of dir, on Windows.
NotADirectoryError – when save method got file instead of dir, on Unix.
- Return type:
- to_config()[source]¶
Converts the dataset instance into a dictionary-based configuration for serialization. Ensures that any subclass-specific details are handled, with additional logic for versioning and caching implemented for CachedDataset.
Adds a key for the dataset’s type using its module and class name and includes the initialization arguments.
For CachedDataset it extracts the underlying dataset’s configuration, handles the versioned flag and removes unnecessary metadata. It also ensures the embedded dataset’s configuration is appropriately flattened or transformed.
If the dataset has a version key, it sets the versioned flag in the configuration.
Removes the metadata key from the configuration if present.