kedro_datasets.svmlight.SVMLightDataset¶
- class kedro_datasets.svmlight.SVMLightDataset(*, filepath, load_args=None, save_args=None, version=None, credentials=None, fs_args=None, metadata=None)[source]¶
SVMLightDataset
loads/saves data from/to a svmlight/libsvm file using an underlying filesystem (e.g.: local, S3, GCS). It uses sklearn functionsdump_svmlight_file
to save andload_svmlight_file
to load a file.Data is loaded as a tuple of features and labels. Labels is NumPy array, and features is Compressed Sparse Row matrix.
This format is a text-based format, with one sample per line. It does not store zero valued features hence it is suitable for sparse datasets.
This format is used as the default format for both svmlight and the libsvm command line programs.
Example usage for the YAML API:
svm_dataset: type: svmlight.SVMLightDataset filepath: data/01_raw/location.svm load_args: zero_based: False save_args: zero_based: False cars: type: svmlight.SVMLightDataset filepath: gcs://your_bucket/cars.svm fs_args: project: my-project credentials: my_gcp_credentials load_args: zero_based: False save_args: zero_based: False
Example usage for the Python API:
from kedro_datasets.svmlight import SVMLightDataset import numpy as np # Features and labels. data = (np.array([[0, 1], [2, 3.14159]]), np.array([7, 3])) dataset = SVMLightDataset(filepath=tmp_path / "test.svm") dataset.save(data) reloaded_features, reloaded_labels = dataset.load() assert (data[0] == reloaded_features).all() assert (data[1] == reloaded_labels).all()
Attributes
Methods
exists
()Checks whether a dataset's output already exists by calling the provided _exists() method.
from_config
(name, config[, load_version, ...])Create a dataset instance using the configuration provided.
load
()Loads data by delegation to the provided load method.
release
()Release any cached data.
Compute the version the dataset should be loaded with.
Compute the version the dataset should be saved with.
save
(data)Saves data by delegation to the provided save method.
Converts the dataset instance into a dictionary-based configuration for serialization.
- DEFAULT_FS_ARGS: dict[str, Any] = {'open_args_load': {'mode': 'rb'}, 'open_args_save': {'mode': 'wb'}}¶
- __init__(*, filepath, load_args=None, save_args=None, version=None, credentials=None, fs_args=None, metadata=None)[source]¶
Creates a new instance of SVMLightDataset to load/save data from a svmlight/libsvm file.
- Parameters:
filepath (
str
) – Filepath in POSIX format to a text file prefixed with a protocol like s3://. If prefix is not provided, file protocol (local filesystem) will be used. The prefix should be any protocol supported byfsspec
.load_args (
Optional
[dict
[str
,Any
]]) – Arguments passed on toload_svmlight_file
. See the details in https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_svmlight_file.htmlsave_args (
Optional
[dict
[str
,Any
]]) – Arguments passed on todump_svmlight_file
. See the details in https://scikit-learn.org/stable/modules/generated/sklearn.datasets.dump_svmlight_file.htmlversion (
Optional
[Version
]) – If specified, should be an instance ofkedro.io.core.Version
. If itsload
attribute is None, the latest version will be loaded. If itssave
attribute is None, save version will be autogenerated.credentials (
Optional
[dict
[str
,Any
]]) – Credentials required to get access to the underlying filesystem. E.g. forGCSFileSystem
it should look like {“token”: None}.fs_args (
Optional
[dict
[str
,Any
]]) – Extra arguments to pass into underlying filesystem class constructor (e.g. {“project”: “my-project”} forGCSFileSystem
). All defaults are preserved, except mode, which is set to rb when loading and to wb when saving.metadata (
Optional
[dict
[str
,Any
]]) – Any arbitrary metadata. This is ignored by Kedro, but may be consumed by users or external plugins.
- exists()[source]¶
Checks whether a dataset’s output already exists by calling the provided _exists() method.
- Return type:
- Returns:
Flag indicating whether the output already exists.
- Raises:
DatasetError – when underlying exists method raises error.
- classmethod from_config(name, config, load_version=None, save_version=None)[source]¶
Create a dataset instance using the configuration provided.
- Parameters:
name (
str
) – Data set name.load_version (
Optional
[str
]) – Version string to be used forload
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.save_version (
Optional
[str
]) – Version string to be used forsave
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.
- Return type:
- Returns:
An instance of an
AbstractDataset
subclass.- Raises:
DatasetError – When the function fails to create the dataset from its config.
- load()[source]¶
Loads data by delegation to the provided load method.
- Return type:
tuple
[csr_matrix
,ndarray
]- Returns:
Data returned by the provided load method.
- Raises:
DatasetError – When underlying load method raises error.
- release()[source]¶
Release any cached data.
- Raises:
DatasetError – when underlying release method raises error.
- Return type:
- save(data)[source]¶
Saves data by delegation to the provided save method.
- Parameters:
data (
tuple
[ndarray
|csr_matrix
,ndarray
]) – the value to be saved by provided save method.- Raises:
DatasetError – when underlying save method raises error.
FileNotFoundError – when save method got file instead of dir, on Windows.
NotADirectoryError – when save method got file instead of dir, on Unix.
- Return type:
- to_config()[source]¶
Converts the dataset instance into a dictionary-based configuration for serialization. Ensures that any subclass-specific details are handled, with additional logic for versioning and caching implemented for CachedDataset.
Adds a key for the dataset’s type using its module and class name and includes the initialization arguments.
For CachedDataset it extracts the underlying dataset’s configuration, handles the versioned flag and removes unnecessary metadata. It also ensures the embedded dataset’s configuration is appropriately flattened or transformed.
If the dataset has a version key, it sets the versioned flag in the configuration.
Removes the metadata key from the configuration if present.