kedro_datasets.spark.DeltaTableDataset¶
- class kedro_datasets.spark.DeltaTableDataset(*, filepath, metadata=None)[source]¶
DeltaTableDataset
loads data into DeltaTable objects.Example usage for the YAML API:
weather@spark: type: spark.SparkDataset filepath: data/02_intermediate/data.parquet file_format: "delta" weather@delta: type: spark.DeltaTableDataset filepath: data/02_intermediate/data.parquet
Example usage for the Python API:
from delta import DeltaTable from kedro_datasets.spark import DeltaTableDataset, SparkDataset from pyspark.sql import SparkSession from pyspark.sql.types import StructField, StringType, IntegerType, StructType schema = StructType( ... [StructField("name", StringType(), True), StructField("age", IntegerType(), True)] ... ) data = [("Alex", 31), ("Bob", 12), ("Clarke", 65), ("Dave", 29)] spark_df = SparkSession.builder.getOrCreate().createDataFrame(data, schema) filepath = (tmp_path / "test_data").as_posix() dataset = SparkDataset(filepath=filepath, file_format="delta") dataset.save(spark_df) deltatable_dataset = DeltaTableDataset(filepath=filepath) delta_table = deltatable_dataset.load() assert isinstance(delta_table, DeltaTable)
Methods
exists
()Checks whether a dataset's output already exists by calling the provided _exists() method.
from_config
(name, config[, load_version, ...])Create a dataset instance using the configuration provided.
load
()Loads data by delegation to the provided load method.
release
()Release any cached data.
save
(data)Saves data by delegation to the provided save method.
Converts the dataset instance into a dictionary-based configuration for serialization.
- __init__(*, filepath, metadata=None)[source]¶
Creates a new instance of
DeltaTableDataset
.- Parameters:
filepath (
str
) – Filepath in POSIX format to a Spark dataframe. When using Databricks and working with data written to mount path points, specifyfilepath``s for (versioned) ``SparkDataset``s starting with ``/dbfs/mnt
.metadata (
Optional
[dict
[str
,Any
]]) – Any arbitrary metadata. This is ignored by Kedro, but may be consumed by users or external plugins.
- exists()[source]¶
Checks whether a dataset’s output already exists by calling the provided _exists() method.
- Return type:
- Returns:
Flag indicating whether the output already exists.
- Raises:
DatasetError – when underlying exists method raises error.
- classmethod from_config(name, config, load_version=None, save_version=None)[source]¶
Create a dataset instance using the configuration provided.
- Parameters:
name (
str
) – Data set name.load_version (
Optional
[str
]) – Version string to be used forload
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.save_version (
Optional
[str
]) – Version string to be used forsave
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.
- Return type:
- Returns:
An instance of an
AbstractDataset
subclass.- Raises:
DatasetError – When the function fails to create the dataset from its config.
- load()[source]¶
Loads data by delegation to the provided load method.
- Return type:
DeltaTable
- Returns:
Data returned by the provided load method.
- Raises:
DatasetError – When underlying load method raises error.
- release()[source]¶
Release any cached data.
- Raises:
DatasetError – when underlying release method raises error.
- Return type:
- save(data)[source]¶
Saves data by delegation to the provided save method.
- Parameters:
data (
None
) – the value to be saved by provided save method.- Raises:
DatasetError – when underlying save method raises error.
FileNotFoundError – when save method got file instead of dir, on Windows.
NotADirectoryError – when save method got file instead of dir, on Unix.
- Return type:
- to_config()[source]¶
Converts the dataset instance into a dictionary-based configuration for serialization. Ensures that any subclass-specific details are handled, with additional logic for versioning and caching implemented for CachedDataset.
Adds a key for the dataset’s type using its module and class name and includes the initialization arguments.
For CachedDataset it extracts the underlying dataset’s configuration, handles the versioned flag and removes unnecessary metadata. It also ensures the embedded dataset’s configuration is appropriately flattened or transformed.
If the dataset has a version key, it sets the versioned flag in the configuration.
Removes the metadata key from the configuration if present.