kedro_datasets.redis.PickleDataset

class kedro_datasets.redis.PickleDataset(*, key, backend='pickle', load_args=None, save_args=None, credentials=None, redis_args=None, metadata=None)[source]

PickleDataset loads/saves data from/to a Redis database. The underlying functionality is supported by the redis library, so it supports all allowed options for instantiating the redis app from_url and setting a value.

Example usage for the YAML API:

my_python_object: # simple example
  type: redis.PickleDataset
  key: my_object
  from_url_args:
    url: redis://127.0.0.1:6379

final_python_object: # example with save args
  type: redis.PickleDataset
  key: my_final_object
  from_url_args:
    url: redis://127.0.0.1:6379
    db: 1
  save_args:
    ex: 10

Example usage for the Python API:

from kedro_datasets.redis import PickleDataset
import pandas as pd

data = pd.DataFrame({"col1": [1, 2], "col2": [4, 5], "col3": [5, 6]})

my_data = PickleDataset(key="my_data")
my_data.save(data)
reloaded = my_data.load()
assert data.equals(reloaded)

Attributes

DEFAULT_LOAD_ARGS

DEFAULT_REDIS_URL

DEFAULT_SAVE_ARGS

Methods

exists()

Checks whether a dataset's output already exists by calling the provided _exists() method.

from_config(name, config[, load_version, ...])

Create a dataset instance using the configuration provided.

load()

Loads data by delegation to the provided load method.

release()

Release any cached data.

save(data)

Saves data by delegation to the provided save method.

to_config()

Converts the dataset instance into a dictionary-based configuration for serialization.

DEFAULT_LOAD_ARGS: dict[str, Any] = {}
DEFAULT_REDIS_URL = 'redis://127.0.0.1:6379'
DEFAULT_SAVE_ARGS: dict[str, Any] = {}
__init__(*, key, backend='pickle', load_args=None, save_args=None, credentials=None, redis_args=None, metadata=None)[source]

Creates a new instance of PickleDataset. This loads/saves data from/to a Redis database while deserialising/serialising. Supports custom backends to serialise/deserialise objects.

Example backends that are compatible (non-exhaustive):
  • pickle

  • dill

  • compress_pickle

  • cloudpickle

Example backends that are incompatible:
  • torch

Parameters:
Raises:
  • ValueError – If backend does not satisfy the pickle interface.

  • ImportError – If the backend module could not be imported.

exists()[source]

Checks whether a dataset’s output already exists by calling the provided _exists() method.

Return type:

bool

Returns:

Flag indicating whether the output already exists.

Raises:

DatasetError – when underlying exists method raises error.

classmethod from_config(name, config, load_version=None, save_version=None)[source]

Create a dataset instance using the configuration provided.

Parameters:
  • name (str) – Data set name.

  • config (dict[str, Any]) – Data set config dictionary.

  • load_version (Optional[str]) – Version string to be used for load operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.

  • save_version (Optional[str]) – Version string to be used for save operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.

Return type:

AbstractDataset

Returns:

An instance of an AbstractDataset subclass.

Raises:

DatasetError – When the function fails to create the dataset from its config.

load()[source]

Loads data by delegation to the provided load method.

Return type:

Any

Returns:

Data returned by the provided load method.

Raises:

DatasetError – When underlying load method raises error.

release()[source]

Release any cached data.

Raises:

DatasetError – when underlying release method raises error.

Return type:

None

save(data)[source]

Saves data by delegation to the provided save method.

Parameters:

data (Any) – the value to be saved by provided save method.

Raises:
  • DatasetError – when underlying save method raises error.

  • FileNotFoundError – when save method got file instead of dir, on Windows.

  • NotADirectoryError – when save method got file instead of dir, on Unix.

Return type:

None

to_config()[source]

Converts the dataset instance into a dictionary-based configuration for serialization. Ensures that any subclass-specific details are handled, with additional logic for versioning and caching implemented for CachedDataset.

Adds a key for the dataset’s type using its module and class name and includes the initialization arguments.

For CachedDataset it extracts the underlying dataset’s configuration, handles the versioned flag and removes unnecessary metadata. It also ensures the embedded dataset’s configuration is appropriately flattened or transformed.

If the dataset has a version key, it sets the versioned flag in the configuration.

Removes the metadata key from the configuration if present.

Return type:

dict[str, Any]

Returns:

A dictionary containing the dataset’s type and initialization arguments.