kedro_datasets.pickle.PickleDataset¶
- class kedro_datasets.pickle.PickleDataset(*, filepath, backend='pickle', load_args=None, save_args=None, version=None, credentials=None, fs_args=None, metadata=None)[source]¶
PickleDataset
loads/saves data from/to a Pickle file using an underlying filesystem (e.g.: local, S3, GCS). The underlying functionality is supported by the specified backend library passed in (defaults to thepickle
library), so it supports all allowed options for loading and saving pickle files.Example usage for the YAML API:
test_model: # simple example without compression type: pickle.PickleDataset filepath: data/07_model_output/test_model.pkl backend: pickle final_model: # example with load and save args type: pickle.PickleDataset filepath: s3://your_bucket/final_model.pkl.lz4 backend: joblib credentials: s3_credentials save_args: compress: lz4
Example usage for the Python API:
from kedro_datasets.pickle import PickleDataset import pandas as pd data = pd.DataFrame({"col1": [1, 2], "col2": [4, 5], "col3": [5, 6]}) dataset = PickleDataset(filepath="test.pkl", backend="pickle") dataset.save(data) reloaded = dataset.load() assert data.equals(reloaded) dataset = PickleDataset( ... filepath=tmp_path / "test.pickle.lz4", ... backend="compress_pickle", ... load_args={"compression": "lz4"}, ... save_args={"compression": "lz4"}, ... ) dataset.save(data) reloaded = dataset.load() assert data.equals(reloaded)
Attributes
Methods
exists
()Checks whether a dataset's output already exists by calling the provided _exists() method.
from_config
(name, config[, load_version, ...])Create a dataset instance using the configuration provided.
load
()Loads data by delegation to the provided load method.
release
()Release any cached data.
Compute the version the dataset should be loaded with.
Compute the version the dataset should be saved with.
save
(data)Saves data by delegation to the provided save method.
Converts the dataset instance into a dictionary-based configuration for serialization.
- __init__(*, filepath, backend='pickle', load_args=None, save_args=None, version=None, credentials=None, fs_args=None, metadata=None)[source]¶
Creates a new instance of
PickleDataset
pointing to a concrete Pickle file on a specific filesystem.PickleDataset
supports custom backends to serialise/deserialise objects.- Example backends that are compatible (non-exhaustive):
pickle
joblib
dill
compress_pickle
- Example backends that are incompatible:
torch
- Parameters:
filepath (
str
) – Filepath in POSIX format to a Pickle file prefixed with a protocol like s3://. If prefix is not provided, file protocol (local filesystem) will be used. The prefix should be any protocol supported byfsspec
. Note: http(s) doesn’t support versioning.backend (
str
) – Backend to use, must be an import path to a module which satisfies thepickle
interface. That is, contains a load and dump function. Defaults to ‘pickle’.load_args (
Optional
[dict
[str
,Any
]]) – Pickle options for loading pickle files. You can pass in arguments that the backend load function specified accepts, e.g: pickle.load: https://docs.python.org/3/library/pickle.html#pickle.load joblib.load: https://joblib.readthedocs.io/en/latest/generated/joblib.load.html dill.load: https://dill.readthedocs.io/en/latest/index.html#dill.load compress_pickle.load: https://lucianopaz.github.io/compress_pickle/html/api/compress_pickle.html#compress_pickle.compress_pickle.load cloudpickle.load: https://github.com/cloudpipe/cloudpickle/blob/master/tests/cloudpickle_test.py All defaults are preserved.save_args (
Optional
[dict
[str
,Any
]]) – Pickle options for saving pickle files. You can pass in arguments that the backend dump function specified accepts, e.g: pickle.dump: https://docs.python.org/3/library/pickle.html#pickle.dump joblib.dump: https://joblib.readthedocs.io/en/latest/generated/joblib.dump.html dill.dump: https://dill.readthedocs.io/en/latest/index.html#dill.dump compress_pickle.dump: https://lucianopaz.github.io/compress_pickle/html/api/compress_pickle.html#compress_pickle.compress_pickle.dump cloudpickle.dump: https://github.com/cloudpipe/cloudpickle/blob/master/tests/cloudpickle_test.py All defaults are preserved.version (
Optional
[Version
]) – If specified, should be an instance ofkedro.io.core.Version
. If itsload
attribute is None, the latest version will be loaded. If itssave
attribute is None, save version will be autogenerated.credentials (
Optional
[dict
[str
,Any
]]) – Credentials required to get access to the underlying filesystem. E.g. forGCSFileSystem
it should look like {“token”: None}.fs_args (
Optional
[dict
[str
,Any
]]) – Extra arguments to pass into underlying filesystem class constructor (e.g. {“project”: “my-project”} forGCSFileSystem
), as well as to pass to the filesystem’s open method through nested keys open_args_load and open_args_save. Here you can find all available arguments for open: https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.open All defaults are preserved, except mode, which is set to wb when saving.metadata (
Optional
[dict
[str
,Any
]]) – Any arbitrary metadata. This is ignored by Kedro, but may be consumed by users or external plugins.
- Raises:
ValueError – If
backend
does not satisfy the pickle interface.ImportError – If the
backend
module could not be imported.
- exists()[source]¶
Checks whether a dataset’s output already exists by calling the provided _exists() method.
- Return type:
- Returns:
Flag indicating whether the output already exists.
- Raises:
DatasetError – when underlying exists method raises error.
- classmethod from_config(name, config, load_version=None, save_version=None)[source]¶
Create a dataset instance using the configuration provided.
- Parameters:
name (
str
) – Data set name.load_version (
Optional
[str
]) – Version string to be used forload
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.save_version (
Optional
[str
]) – Version string to be used forsave
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.
- Return type:
- Returns:
An instance of an
AbstractDataset
subclass.- Raises:
DatasetError – When the function fails to create the dataset from its config.
- load()[source]¶
Loads data by delegation to the provided load method.
- Return type:
- Returns:
Data returned by the provided load method.
- Raises:
DatasetError – When underlying load method raises error.
- release()[source]¶
Release any cached data.
- Raises:
DatasetError – when underlying release method raises error.
- Return type:
- save(data)[source]¶
Saves data by delegation to the provided save method.
- Parameters:
data (
Any
) – the value to be saved by provided save method.- Raises:
DatasetError – when underlying save method raises error.
FileNotFoundError – when save method got file instead of dir, on Windows.
NotADirectoryError – when save method got file instead of dir, on Unix.
- Return type:
- to_config()[source]¶
Converts the dataset instance into a dictionary-based configuration for serialization. Ensures that any subclass-specific details are handled, with additional logic for versioning and caching implemented for CachedDataset.
Adds a key for the dataset’s type using its module and class name and includes the initialization arguments.
For CachedDataset it extracts the underlying dataset’s configuration, handles the versioned flag and removes unnecessary metadata. It also ensures the embedded dataset’s configuration is appropriately flattened or transformed.
If the dataset has a version key, it sets the versioned flag in the configuration.
Removes the metadata key from the configuration if present.