kedro_datasets.pandas.ParquetDataset¶
- class kedro_datasets.pandas.ParquetDataset(*, filepath, load_args=None, save_args=None, version=None, credentials=None, fs_args=None, metadata=None)[source]¶
ParquetDataset
loads/saves data from/to a Parquet file using an underlying filesystem (e.g.: local, S3, GCS). It uses pandas to handle the Parquet file.Example usage for the YAML API:
boats: type: pandas.ParquetDataset filepath: data/01_raw/boats.parquet load_args: engine: pyarrow use_nullable_dtypes: True save_args: file_scheme: hive has_nulls: False engine: pyarrow trucks: type: pandas.ParquetDataset filepath: abfs://container/02_intermediate/trucks.parquet credentials: dev_abs load_args: columns: [name, gear, disp, wt] index: name save_args: compression: GZIP partition_on: [name]
Example usage for the Python API:
from kedro_datasets.pandas import ParquetDataset import pandas as pd data = pd.DataFrame({"col1": [1, 2], "col2": [4, 5], "col3": [5, 6]}) dataset = ParquetDataset(filepath=tmp_path / "test.parquet") dataset.save(data) reloaded = dataset.load() assert data.equals(reloaded)
Attributes
Methods
exists
()Checks whether a dataset's output already exists by calling the provided _exists() method.
from_config
(name, config[, load_version, ...])Create a dataset instance using the configuration provided.
load
()Loads data by delegation to the provided load method.
preview
([nrows])Generate a preview of the dataset with a specified number of rows.
release
()Release any cached data.
Compute the version the dataset should be loaded with.
Compute the version the dataset should be saved with.
save
(data)Saves data by delegation to the provided save method.
Converts the dataset instance into a dictionary-based configuration for serialization.
- __init__(*, filepath, load_args=None, save_args=None, version=None, credentials=None, fs_args=None, metadata=None)[source]¶
Creates a new instance of
ParquetDataset
pointing to a concrete Parquet file on a specific filesystem.- Parameters:
filepath (
str
) – Filepath in POSIX format to a Parquet file prefixed with a protocol like s3://. If prefix is not provided, file protocol (local filesystem) will be used. The prefix should be any protocol supported byfsspec
. It can also be a path to a directory. If the directory is provided then it can be used for reading partitioned parquet files. Note: http(s) doesn’t support versioning.load_args (
Optional
[dict
[str
,Any
]]) – Additional options for loading Parquet file(s). Here you can find all available arguments when reading single file: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_parquet.html Here you can find all available arguments when reading partitioned datasets: https://arrow.apache.org/docs/python/generated/pyarrow.parquet.ParquetDataset.html#pyarrow.parquet.ParquetDataset.read All defaults are preserved.save_args (
Optional
[dict
[str
,Any
]]) – Additional saving options for saving Parquet file(s). Here you can find all available arguments: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_parquet.html All defaults are preserved.partition_cols
is not supported.version (
Optional
[Version
]) – If specified, should be an instance ofkedro.io.core.Version
. If itsload
attribute is None, the latest version will be loaded. If itssave
attribute is None, save version will be autogenerated.credentials (
Optional
[dict
[str
,Any
]]) – Credentials required to get access to the underlying filesystem. E.g. forGCSFileSystem
it should look like {“token”: None}.fs_args (
Optional
[dict
[str
,Any
]]) – Extra arguments to pass into underlying filesystem class constructor (e.g. {“project”: “my-project”} forGCSFileSystem
). Defaults are preserved, apart from the open_args_save mode which is set to wb. Note that the save method requires bytes, so any save mode provided should include “b” for bytes.metadata (
Optional
[dict
[str
,Any
]]) – Any arbitrary metadata. This is ignored by Kedro, but may be consumed by users or external plugins.
- exists()[source]¶
Checks whether a dataset’s output already exists by calling the provided _exists() method.
- Return type:
- Returns:
Flag indicating whether the output already exists.
- Raises:
DatasetError – when underlying exists method raises error.
- classmethod from_config(name, config, load_version=None, save_version=None)[source]¶
Create a dataset instance using the configuration provided.
- Parameters:
name (
str
) – Data set name.load_version (
Optional
[str
]) – Version string to be used forload
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.save_version (
Optional
[str
]) – Version string to be used forsave
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.
- Return type:
- Returns:
An instance of an
AbstractDataset
subclass.- Raises:
DatasetError – When the function fails to create the dataset from its config.
- load()[source]¶
Loads data by delegation to the provided load method.
- Return type:
DataFrame
- Returns:
Data returned by the provided load method.
- Raises:
DatasetError – When underlying load method raises error.
- release()[source]¶
Release any cached data.
- Raises:
DatasetError – when underlying release method raises error.
- Return type:
- save(data)[source]¶
Saves data by delegation to the provided save method.
- Parameters:
data (
DataFrame
) – the value to be saved by provided save method.- Raises:
DatasetError – when underlying save method raises error.
FileNotFoundError – when save method got file instead of dir, on Windows.
NotADirectoryError – when save method got file instead of dir, on Unix.
- Return type:
- to_config()[source]¶
Converts the dataset instance into a dictionary-based configuration for serialization. Ensures that any subclass-specific details are handled, with additional logic for versioning and caching implemented for CachedDataset.
Adds a key for the dataset’s type using its module and class name and includes the initialization arguments.
For CachedDataset it extracts the underlying dataset’s configuration, handles the versioned flag and removes unnecessary metadata. It also ensures the embedded dataset’s configuration is appropriately flattened or transformed.
If the dataset has a version key, it sets the versioned flag in the configuration.
Removes the metadata key from the configuration if present.