kedro_datasets.pandas.GBQTableDataset¶
- class kedro_datasets.pandas.GBQTableDataset(*, dataset, table_name, project=None, credentials=None, load_args=None, save_args=None, metadata=None)[source]¶
GBQTableDataset
loads and saves data from/to Google BigQuery. It uses pandas-gbq to read and write from/to BigQuery table.Example usage for the YAML API:
vehicles: type: pandas.GBQTableDataset dataset: big_query_dataset table_name: big_query_table project: my-project credentials: gbq-creds load_args: reauth: True save_args: chunk_size: 100
Example usage for the Python API:
from kedro_datasets.pandas import GBQTableDataset import pandas as pd data = pd.DataFrame({"col1": [1, 2], "col2": [4, 5], "col3": [5, 6]}) dataset = GBQTableDataset( ... dataset="dataset", table_name="table_name", project="my-project" ... ) dataset.save(data) reloaded = dataset.load() assert data.equals(reloaded)
Attributes
Methods
exists
()Checks whether a dataset's output already exists by calling the provided _exists() method.
from_config
(name, config[, load_version, ...])Create a dataset instance using the configuration provided.
load
()Loads data by delegation to the provided load method.
release
()Release any cached data.
save
(data)Saves data by delegation to the provided save method.
Converts the dataset instance into a dictionary-based configuration for serialization.
- __init__(*, dataset, table_name, project=None, credentials=None, load_args=None, save_args=None, metadata=None)[source]¶
Creates a new instance of
GBQTableDataset
.- Parameters:
dataset (
str
) – Google BigQuery dataset.table_name (
str
) – Google BigQuery table name.project (
Optional
[str
]) – Google BigQuery Account project ID. Optional when available from the environment. https://cloud.google.com/resource-manager/docs/creating-managing-projectscredentials (
Union
[dict
[str
,Any
],str
,Credentials
,None
]) – Credentials for accessing Google APIs. Either a credential that bases ongoogle.auth.credentials.Credentials
OR a service account json as a dictionary OR a path to a service account key json file. https://googleapis.dev/python/google-auth/latest/load_args (
Optional
[dict
[str
,Any
]]) – Pandas options for loading BigQuery table into DataFrame. Here you can find all available arguments: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_gbq.html All defaults are preserved.save_args (
Optional
[dict
[str
,Any
]]) – Pandas options for saving DataFrame to BigQuery table. Here you can find all available arguments: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_gbq.html All defaults are preserved, but “progress_bar”, which is set to False.metadata (
Optional
[dict
[str
,Any
]]) – Any arbitrary metadata. This is ignored by Kedro, but may be consumed by users or external plugins.
- Raises:
DatasetError – When
load_args['location']
andsave_args['location']
are different.
- exists()[source]¶
Checks whether a dataset’s output already exists by calling the provided _exists() method.
- Return type:
- Returns:
Flag indicating whether the output already exists.
- Raises:
DatasetError – when underlying exists method raises error.
- classmethod from_config(name, config, load_version=None, save_version=None)[source]¶
Create a dataset instance using the configuration provided.
- Parameters:
name (
str
) – Data set name.load_version (
Optional
[str
]) – Version string to be used forload
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.save_version (
Optional
[str
]) – Version string to be used forsave
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.
- Return type:
- Returns:
An instance of an
AbstractDataset
subclass.- Raises:
DatasetError – When the function fails to create the dataset from its config.
- load()[source]¶
Loads data by delegation to the provided load method.
- Return type:
DataFrame
- Returns:
Data returned by the provided load method.
- Raises:
DatasetError – When underlying load method raises error.
- release()[source]¶
Release any cached data.
- Raises:
DatasetError – when underlying release method raises error.
- Return type:
- save(data)[source]¶
Saves data by delegation to the provided save method.
- Parameters:
data (
DataFrame
) – the value to be saved by provided save method.- Raises:
DatasetError – when underlying save method raises error.
FileNotFoundError – when save method got file instead of dir, on Windows.
NotADirectoryError – when save method got file instead of dir, on Unix.
- Return type:
- to_config()[source]¶
Converts the dataset instance into a dictionary-based configuration for serialization. Ensures that any subclass-specific details are handled, with additional logic for versioning and caching implemented for CachedDataset.
Adds a key for the dataset’s type using its module and class name and includes the initialization arguments.
For CachedDataset it extracts the underlying dataset’s configuration, handles the versioned flag and removes unnecessary metadata. It also ensures the embedded dataset’s configuration is appropriately flattened or transformed.
If the dataset has a version key, it sets the versioned flag in the configuration.
Removes the metadata key from the configuration if present.