kedro_datasets.pandas.GBQQueryDataset¶
- class kedro_datasets.pandas.GBQQueryDataset(sql=None, project=None, credentials=None, load_args=None, fs_args=None, filepath=None, metadata=None)[source]¶
GBQQueryDataset
loads data from a provided SQL query from Google BigQuery. It usespandas_gbq.read_gbq
which itself usespandas-gbq
internally to read from BigQuery table. Therefore it supports all allowed pandas options onread_gbq
.Example adding a catalog entry with the
YAML API
:vehicles: type: pandas.GBQQueryDataset sql: "select shuttle, shuttle_id from spaceflights.shuttles;" project: my-project credentials: gbq-creds load_args: reauth: True
Example using Python API:
from kedro_datasets.pandas import GBQQueryDataset sql = "SELECT * FROM dataset_1.table_a" dataset = GBQQueryDataset(sql, project="my-project") sql_data = dataset.load()
Attributes
Methods
exists
()Checks whether a dataset's output already exists by calling the provided _exists() method.
from_config
(name, config[, load_version, ...])Create a dataset instance using the configuration provided.
load
()Loads data by delegation to the provided load method.
release
()Release any cached data.
save
(data)Saves data by delegation to the provided save method.
Converts the dataset instance into a dictionary-based configuration for serialization.
- __init__(sql=None, project=None, credentials=None, load_args=None, fs_args=None, filepath=None, metadata=None)[source]¶
Creates a new instance of
GBQQueryDataset
.- Parameters:
project (
Optional
[str
]) – Google BigQuery Account project ID. Optional when available from the environment. https://cloud.google.com/resource-manager/docs/creating-managing-projectscredentials (
Union
[dict
[str
,Any
],Credentials
,None
]) – Credentials for accessing Google APIs. Either a credential that bases ongoogle.auth.credentials.Credentials
OR a service account json as a dictionary OR a path to a service account key json file. https://googleapis.dev/python/google-auth/latest/load_args (
Optional
[dict
[str
,Any
]]) – Pandas options for loading BigQuery table into DataFrame. Here you can find all available arguments: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_gbq.html All defaults are preserved.fs_args (
Optional
[dict
[str
,Any
]]) – Extra arguments to pass into underlying filesystem class constructor (e.g. {“project”: “my-project”} forGCSFileSystem
) used for reading the SQL query from filepath.filepath (
Optional
[str
]) – A path to a file with a sql query statement.metadata (
Optional
[dict
[str
,Any
]]) – Any arbitrary metadata. This is ignored by Kedro, but may be consumed by users or external plugins.
- Raises:
DatasetError – When
sql
andfilepath
parameters are either both empty or both provided, as well as when the save() method is invoked.
- exists()[source]¶
Checks whether a dataset’s output already exists by calling the provided _exists() method.
- Return type:
- Returns:
Flag indicating whether the output already exists.
- Raises:
DatasetError – when underlying exists method raises error.
- classmethod from_config(name, config, load_version=None, save_version=None)[source]¶
Create a dataset instance using the configuration provided.
- Parameters:
name (
str
) – Data set name.load_version (
Optional
[str
]) – Version string to be used forload
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.save_version (
Optional
[str
]) – Version string to be used forsave
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.
- Return type:
- Returns:
An instance of an
AbstractDataset
subclass.- Raises:
DatasetError – When the function fails to create the dataset from its config.
- load()[source]¶
Loads data by delegation to the provided load method.
- Return type:
DataFrame
- Returns:
Data returned by the provided load method.
- Raises:
DatasetError – When underlying load method raises error.
- release()[source]¶
Release any cached data.
- Raises:
DatasetError – when underlying release method raises error.
- Return type:
- save(data)[source]¶
Saves data by delegation to the provided save method.
- Parameters:
data (
None
) – the value to be saved by provided save method.- Raises:
DatasetError – when underlying save method raises error.
FileNotFoundError – when save method got file instead of dir, on Windows.
NotADirectoryError – when save method got file instead of dir, on Unix.
- Return type:
- to_config()[source]¶
Converts the dataset instance into a dictionary-based configuration for serialization. Ensures that any subclass-specific details are handled, with additional logic for versioning and caching implemented for CachedDataset.
Adds a key for the dataset’s type using its module and class name and includes the initialization arguments.
For CachedDataset it extracts the underlying dataset’s configuration, handles the versioned flag and removes unnecessary metadata. It also ensures the embedded dataset’s configuration is appropriately flattened or transformed.
If the dataset has a version key, it sets the versioned flag in the configuration.
Removes the metadata key from the configuration if present.