kedro_datasets.matplotlib.MatplotlibDataset¶
- class kedro_datasets.matplotlib.MatplotlibDataset(*, filepath, fs_args=None, credentials=None, save_args=None, version=None, overwrite=False, metadata=None)[source]¶
MatplotlibDataset
saves one or more Matplotlib objects as image files to an underlying filesystem (e.g. local, S3, GCS).Example usage for the YAML API:
output_plot: type: matplotlib.MatplotlibDataset filepath: data/08_reporting/output_plot.png save_args: format: png
Example usage for the Python API:
import matplotlib.pyplot as plt from kedro_datasets.matplotlib import MatplotlibDataset fig = plt.figure() plt.plot([1, 2, 3]) [<matplotlib.lines.Line2D object at 0x...>] plot_dataset = MatplotlibDataset(filepath=tmp_path / "data/08_reporting/output_plot.png") plt.close() plot_dataset.save(fig)
Example saving a plot as a PDF file:
import matplotlib.pyplot as plt from kedro_datasets.matplotlib import MatplotlibDataset fig = plt.figure() plt.plot([1, 2, 3]) [<matplotlib.lines.Line2D object at 0x...>] pdf_plot_dataset = MatplotlibDataset( ... filepath=tmp_path / "data/08_reporting/output_plot.pdf", save_args={"format": "pdf"} ... ) plt.close() pdf_plot_dataset.save(fig)
Example saving multiple plots in a folder, using a dictionary:
import matplotlib.pyplot as plt from kedro_datasets.matplotlib import MatplotlibDataset plots_dict = {} for colour in ["blue", "green", "red"]: ... plots_dict[f"{colour}.png"] = plt.figure() ... plt.plot([1, 2, 3], color=colour) ... [<matplotlib.lines.Line2D object at 0x...>] [<matplotlib.lines.Line2D object at 0x...>] [<matplotlib.lines.Line2D object at 0x...>] plt.close("all") dict_plot_dataset = MatplotlibDataset(filepath=tmp_path / "data/08_reporting/plots") dict_plot_dataset.save(plots_dict)
Example saving multiple plots in a folder, using a list:
import matplotlib.pyplot as plt from kedro_datasets.matplotlib import MatplotlibDataset plots_list = [] for i in range(5): ... plots_list.append(plt.figure()) ... plt.plot([i, i + 1, i + 2]) ... [<matplotlib.lines.Line2D object at 0x...>] [<matplotlib.lines.Line2D object at 0x...>] [<matplotlib.lines.Line2D object at 0x...>] [<matplotlib.lines.Line2D object at 0x...>] [<matplotlib.lines.Line2D object at 0x...>] plt.close("all") list_plot_dataset = MatplotlibDataset(filepath=tmp_path / "data/08_reporting/plots") list_plot_dataset.save(plots_list)
Attributes
Methods
exists
()Checks whether a dataset's output already exists by calling the provided _exists() method.
from_config
(name, config[, load_version, ...])Create a dataset instance using the configuration provided.
load
()Loading is not supported for MatplotlibDataset.
preview
()Generates a preview of the matplotlib dataset as a base64 encoded image.
release
()Release any cached data.
Compute the version the dataset should be loaded with.
Compute the version the dataset should be saved with.
save
(data)Saves data by delegation to the provided save method.
Converts the dataset instance into a dictionary-based configuration for serialization.
- __init__(*, filepath, fs_args=None, credentials=None, save_args=None, version=None, overwrite=False, metadata=None)[source]¶
Creates a new instance of
MatplotlibDataset
.- Parameters:
filepath (
str
) – Filepath in POSIX format to save Matplotlib objects to, prefixed with a protocol like s3://. If prefix is not provided, file protocol (local filesystem) will be used. The prefix should be any protocol supported byfsspec
.fs_args (
Optional
[dict
[str
,Any
]]) – Extra arguments to pass into underlying filesystem class constructor (e.g. {“project”: “my-project”} forGCSFileSystem
), as well as to pass to the filesystem’s open method through nested key open_args_save. Here you can find all available arguments for open: https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.open All defaults are preserved, except mode, which is set to wb when saving.credentials (
Optional
[dict
[str
,Any
]]) – Credentials required to get access to the underlying filesystem. E.g. forS3FileSystem
it should look like: {‘key’: ‘<id>’, ‘secret’: ‘<key>’}}save_args (
Optional
[dict
[str
,Any
]]) – Save args passed to plt.savefig. See https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.htmlversion (
Optional
[Version
]) – If specified, should be an instance ofkedro.io.core.Version
. If itsload
attribute is None, the latest version will be loaded. If itssave
attribute is None, save version will be autogenerated.overwrite (
bool
) – If True, any existing image files will be removed. Only relevant when saving multiple Matplotlib objects at once.metadata (
Optional
[dict
[str
,Any
]]) – Any arbitrary Any arbitrary metadata. This is ignored by Kedro, but may be consumed by users or external plugins.
- exists()[source]¶
Checks whether a dataset’s output already exists by calling the provided _exists() method.
- Return type:
- Returns:
Flag indicating whether the output already exists.
- Raises:
DatasetError – when underlying exists method raises error.
- classmethod from_config(name, config, load_version=None, save_version=None)[source]¶
Create a dataset instance using the configuration provided.
- Parameters:
name (
str
) – Data set name.load_version (
Optional
[str
]) – Version string to be used forload
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.save_version (
Optional
[str
]) – Version string to be used forsave
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.
- Return type:
- Returns:
An instance of an
AbstractDataset
subclass.- Raises:
DatasetError – When the function fails to create the dataset from its config.
- load()[source]¶
Loading is not supported for MatplotlibDataset.
- Raises:
DatasetError – When called with any arguments.
- Return type:
- Returns:
Never returns as it always raises an exception.
- preview()[source]¶
Generates a preview of the matplotlib dataset as a base64 encoded image.
- Returns:
A base64 encoded string representing the matplotlib plot image.
- Return type:
- release()[source]¶
Release any cached data.
- Raises:
DatasetError – when underlying release method raises error.
- Return type:
- save(data)[source]¶
Saves data by delegation to the provided save method.
- Parameters:
data (
Figure
|list
[Figure
] |dict
[str
,Figure
]) – the value to be saved by provided save method.- Raises:
DatasetError – when underlying save method raises error.
FileNotFoundError – when save method got file instead of dir, on Windows.
NotADirectoryError – when save method got file instead of dir, on Unix.
- Return type:
- to_config()[source]¶
Converts the dataset instance into a dictionary-based configuration for serialization. Ensures that any subclass-specific details are handled, with additional logic for versioning and caching implemented for CachedDataset.
Adds a key for the dataset’s type using its module and class name and includes the initialization arguments.
For CachedDataset it extracts the underlying dataset’s configuration, handles the versioned flag and removes unnecessary metadata. It also ensures the embedded dataset’s configuration is appropriately flattened or transformed.
If the dataset has a version key, it sets the versioned flag in the configuration.
Removes the metadata key from the configuration if present.