kedro_datasets.dask.CSVDataset

class kedro_datasets.dask.CSVDataset(filepath, load_args=None, save_args=None, credentials=None, fs_args=None, metadata=None)[source]

CSVDataset loads and saves data to comma-separated value file(s). It uses Dask remote data services to handle the corresponding load and save operations: https://docs.dask.org/en/stable/how-to/connect-to-remote-data.html

Example usage for the YAML API:

cars:
  type: dask.CSVDataset
  filepath: s3://bucket_name/path/to/folder
  save_args:
    compression: GZIP
  credentials:
    client_kwargs:
      aws_access_key_id: YOUR_KEY
      aws_secret_access_key: YOUR_SECRET

Example usage for the Python API:

from kedro_datasets.dask import CSVDataset
import pandas as pd
import numpy as np
import dask.dataframe as dd
data = pd.DataFrame({"col1": [1, 2], "col2": [4, 5], "col3": [[5, 6], [7, 8]]})
ddf = dd.from_pandas(data, npartitions=1)
dataset = CSVDataset(filepath="path/to/folder/*.csv")
dataset.save(ddf)
reloaded = dataset.load()
assert np.array_equal(ddf.compute(), reloaded.compute())

Attributes

DEFAULT_LOAD_ARGS

DEFAULT_SAVE_ARGS

fs_args

Property of optional file system parameters.

Methods

exists()

Checks whether a dataset's output already exists by calling the provided _exists() method.

from_config(name, config[, load_version, ...])

Create a dataset instance using the configuration provided.

load()

Loads data by delegation to the provided load method.

release()

Release any cached data.

save(data)

Saves data by delegation to the provided save method.

to_config()

Converts the dataset instance into a dictionary-based configuration for serialization.

DEFAULT_LOAD_ARGS: dict[str, Any] = {}
DEFAULT_SAVE_ARGS: dict[str, Any] = {'index': False}
__init__(filepath, load_args=None, save_args=None, credentials=None, fs_args=None, metadata=None)[source]

Creates a new instance of CSVDataset pointing to concrete CSV files.

Parameters:
exists()[source]

Checks whether a dataset’s output already exists by calling the provided _exists() method.

Return type:

bool

Returns:

Flag indicating whether the output already exists.

Raises:

DatasetError – when underlying exists method raises error.

classmethod from_config(name, config, load_version=None, save_version=None)[source]

Create a dataset instance using the configuration provided.

Parameters:
  • name (str) – Data set name.

  • config (dict[str, Any]) – Data set config dictionary.

  • load_version (Optional[str]) – Version string to be used for load operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.

  • save_version (Optional[str]) – Version string to be used for save operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.

Return type:

AbstractDataset

Returns:

An instance of an AbstractDataset subclass.

Raises:

DatasetError – When the function fails to create the dataset from its config.

property fs_args: dict[str, Any]

Property of optional file system parameters.

Return type:

dict[str, Any]

Returns:

A dictionary of backend file system parameters, including credentials.

load()[source]

Loads data by delegation to the provided load method.

Return type:

DataFrame

Returns:

Data returned by the provided load method.

Raises:

DatasetError – When underlying load method raises error.

release()[source]

Release any cached data.

Raises:

DatasetError – when underlying release method raises error.

Return type:

None

save(data)[source]

Saves data by delegation to the provided save method.

Parameters:

data (DataFrame) – the value to be saved by provided save method.

Raises:
  • DatasetError – when underlying save method raises error.

  • FileNotFoundError – when save method got file instead of dir, on Windows.

  • NotADirectoryError – when save method got file instead of dir, on Unix.

Return type:

None

to_config()[source]

Converts the dataset instance into a dictionary-based configuration for serialization. Ensures that any subclass-specific details are handled, with additional logic for versioning and caching implemented for CachedDataset.

Adds a key for the dataset’s type using its module and class name and includes the initialization arguments.

For CachedDataset it extracts the underlying dataset’s configuration, handles the versioned flag and removes unnecessary metadata. It also ensures the embedded dataset’s configuration is appropriately flattened or transformed.

If the dataset has a version key, it sets the versioned flag in the configuration.

Removes the metadata key from the configuration if present.

Return type:

dict[str, Any]

Returns:

A dictionary containing the dataset’s type and initialization arguments.