Source code for kedro.extras.datasets.plotly.plotly_dataset

"""``PlotlyDataSet`` generates a plot from a pandas DataFrame and saves it to a JSON
file using an underlying filesystem (e.g.: local, S3, GCS). It loads the JSON into a
plotly figure.
"""
from copy import deepcopy
from typing import Any, Dict

import pandas as pd
import plotly.express as px
from plotly import graph_objects as go

from kedro.io.core import Version

from .json_dataset import JSONDataSet

# NOTE: kedro.extras.datasets will be removed in Kedro 0.19.0.
# Any contribution to datasets should be made in kedro-datasets
# in kedro-plugins (https://github.com/kedro-org/kedro-plugins)


[docs]class PlotlyDataSet(JSONDataSet): """``PlotlyDataSet`` generates a plot from a pandas DataFrame and saves it to a JSON file using an underlying filesystem (e.g.: local, S3, GCS). It loads the JSON into a plotly figure. ``PlotlyDataSet`` is a convenience wrapper for ``plotly.JSONDataSet``. It generates the JSON file directly from a pandas DataFrame through ``plotly_args``. Example usage for the `YAML API <https://kedro.readthedocs.io/en/stable/data/\ data_catalog.html#use-the-data-catalog-with-the-yaml-api>`_: .. code-block:: yaml bar_plot: type: plotly.PlotlyDataSet filepath: data/08_reporting/bar_plot.json plotly_args: type: bar fig: x: features y: importance orientation: h layout: xaxis_title: x yaxis_title: y title: Title Example usage for the `Python API <https://kedro.readthedocs.io/en/stable/data/\ data_catalog.html#use-the-data-catalog-with-the-code-api>`_: :: >>> from kedro.extras.datasets.plotly import PlotlyDataSet >>> import plotly.express as px >>> import pandas as pd >>> >>> df_data = pd.DataFrame([[0, 1], [1, 0]], columns=('x1', 'x2')) >>> >>> data_set = PlotlyDataSet( >>> filepath='scatter_plot.json', >>> plotly_args={ >>> 'type': 'scatter', >>> 'fig': {'x': 'x1', 'y': 'x2'}, >>> } >>> ) >>> data_set.save(df_data) >>> reloaded = data_set.load() >>> assert px.scatter(df_data, x='x1', y='x2') == reloaded """ # pylint: disable=too-many-arguments
[docs] def __init__( self, filepath: str, plotly_args: Dict[str, Any], load_args: Dict[str, Any] = None, save_args: Dict[str, Any] = None, version: Version = None, credentials: Dict[str, Any] = None, fs_args: Dict[str, Any] = None, ) -> None: """Creates a new instance of ``PlotlyDataSet`` pointing to a concrete JSON file on a specific filesystem. Args: filepath: Filepath in POSIX format to a JSON file prefixed with a protocol like `s3://`. If prefix is not provided `file` protocol (local filesystem) will be used. The prefix should be any protocol supported by ``fsspec``. Note: `http(s)` doesn't support versioning. plotly_args: Plotly configuration for generating a plotly figure from the dataframe. Keys are `type` (plotly express function, e.g. bar, line, scatter), `fig` (kwargs passed to the plotting function), theme (defaults to `plotly`), `layout`. load_args: Plotly options for loading JSON files. Here you can find all available arguments: https://plotly.com/python-api-reference/generated/plotly.io.from_json.html#plotly.io.from_json All defaults are preserved. save_args: Plotly options for saving JSON files. Here you can find all available arguments: https://plotly.com/python-api-reference/generated/plotly.io.write_json.html All defaults are preserved. version: If specified, should be an instance of ``kedro.io.core.Version``. If its ``load`` attribute is None, the latest version will be loaded. If its ``save`` attribute is None, save version will be autogenerated. credentials: Credentials required to get access to the underlying filesystem. E.g. for ``GCSFileSystem`` it should look like `{'token': None}`. fs_args: Extra arguments to pass into underlying filesystem class constructor (e.g. `{"project": "my-project"}` for ``GCSFileSystem``), as well as to pass to the filesystem's `open` method through nested keys `open_args_load` and `open_args_save`. Here you can find all available arguments for `open`: https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.open All defaults are preserved, except `mode`, which is set to `w` when saving. """ super().__init__(filepath, load_args, save_args, version, credentials, fs_args) self._plotly_args = plotly_args _fs_args = deepcopy(fs_args) or {} _fs_open_args_load = _fs_args.pop("open_args_load", {}) _fs_open_args_save = _fs_args.pop("open_args_save", {}) _fs_open_args_save.setdefault("mode", "w") self._fs_open_args_load = _fs_open_args_load self._fs_open_args_save = _fs_open_args_save
def _describe(self) -> Dict[str, Any]: return {**super()._describe(), "plotly_args": self._plotly_args} def _save(self, data: pd.DataFrame) -> None: fig = self._plot_dataframe(data) super()._save(fig) def _plot_dataframe(self, data: pd.DataFrame) -> go.Figure: plot_type = self._plotly_args.get("type") fig_params = self._plotly_args.get("fig", {}) fig = getattr(px, plot_type)(data, **fig_params) # type: ignore fig.update_layout(template=self._plotly_args.get("theme", "plotly")) fig.update_layout(self._plotly_args.get("layout", {})) return fig