kedro.io.MemoryDataset¶
- class kedro.io.MemoryDataset(data=<object object>, copy_mode=None, metadata=None)[source]¶
MemoryDataset
loads and saves data from/to an in-memory Python object. The _EPHEMERAL attribute is set to True to indicate MemoryDataset’s non-persistence.Example:
from kedro.io import MemoryDataset import pandas as pd data = pd.DataFrame({'col1': [1, 2], 'col2': [4, 5], 'col3': [5, 6]}) dataset = MemoryDataset(data=data) loaded_data = dataset.load() assert loaded_data.equals(data) new_data = pd.DataFrame({'col1': [1, 2], 'col2': [4, 5]}) dataset.save(new_data) reloaded_data = dataset.load() assert reloaded_data.equals(new_data)
Methods
exists
()Checks whether a dataset's output already exists by calling the provided _exists() method.
from_config
(name, config[, load_version, ...])Create a dataset instance using the configuration provided.
load
()Loads data by delegation to the provided load method.
release
()Release any cached data.
save
(data)Saves data by delegation to the provided save method.
Converts the dataset instance into a dictionary-based configuration for serialization.
- __init__(data=<object object>, copy_mode=None, metadata=None)[source]¶
Creates a new instance of
MemoryDataset
pointing to the provided Python object.- Parameters:
data (Any) – Python object containing the data.
copy_mode (str | None) – The copy mode used to copy the data. Possible values are: “deepcopy”, “copy” and “assign”. If not provided, it is inferred based on the data type.
metadata (dict[str, Any] | None) – Any arbitrary metadata. This is ignored by Kedro, but may be consumed by users or external plugins.
- exists()[source]¶
Checks whether a dataset’s output already exists by calling the provided _exists() method.
- Return type:
- Returns:
Flag indicating whether the output already exists.
- Raises:
DatasetError – when underlying exists method raises error.
- classmethod from_config(name, config, load_version=None, save_version=None)[source]¶
Create a dataset instance using the configuration provided.
- Parameters:
name (str) – Data set name.
load_version (str | None) – Version string to be used for
load
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.save_version (str | None) – Version string to be used for
save
operation if the dataset is versioned. Has no effect on the dataset if versioning was not enabled.
- Return type:
- Returns:
An instance of an
AbstractDataset
subclass.- Raises:
DatasetError – When the function fails to create the dataset from its config.
- load()[source]¶
Loads data by delegation to the provided load method.
- Return type:
- Returns:
Data returned by the provided load method.
- Raises:
DatasetError – When underlying load method raises error.
- release()[source]¶
Release any cached data.
- Raises:
DatasetError – when underlying release method raises error.
- Return type:
- save(data)[source]¶
Saves data by delegation to the provided save method.
- Parameters:
data (
Any
) – the value to be saved by provided save method.- Raises:
DatasetError – when underlying save method raises error.
FileNotFoundError – when save method got file instead of dir, on Windows.
NotADirectoryError – when save method got file instead of dir, on Unix.
- Return type:
- to_config()[source]¶
Converts the dataset instance into a dictionary-based configuration for serialization. Ensures that any subclass-specific details are handled, with additional logic for versioning and caching implemented for CachedDataset.
Adds a key for the dataset’s type using its module and class name and includes the initialization arguments.
For CachedDataset it extracts the underlying dataset’s configuration, handles the versioned flag and removes unnecessary metadata. It also ensures the embedded dataset’s configuration is appropriately flattened or transformed.
If the dataset has a version key, it sets the versioned flag in the configuration.
Removes the metadata key from the configuration if present.